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A recurrence relation is shown to exist between O-lattices of rotation-related

grain boundaries (GBs) when a suitable parametrization of the rotation angle is

introduced. This relation allows the basis vectors of any O-lattice to be

calculated by a simple vector addition if the basis vectors of any two orientations

are known. Its main usefulness, however, lies in the fact that it induces a

partition of the angular space into disjoint sets, which groups grain boundaries

into a finite number of equivalence classes, each represented by a special

singular boundary (normal form). This shows that the O-lattice theory contains

within it a much sought after general classification scheme for interfaces

independent of the crystal system and therefore completely general.

1. Introduction

Perhaps the most important goal in the grain-boundary (GB) field is

to find a general theory able to relate the physical properties to the

atomic structure. One problem has been the difficulty in finding a

general (system-independent) theory capable of providing structural

information as a function of measurable external parameters such as

the crystallographic structure and relative orientation of the parent

grains. One theory that deserves special mention is Bollmann’s

O-lattice theory (Bollmann, 1970), which provides the dislocation

content of arbitrary interfaces. Bollmann’s theory is completely

derived from first principles, sustained by a solid mathematical

foundation and completely general. Its main drawback, however, is

that it does not provide a detailed (atomistic) picture of the interface.

In the hope of determining the detailed structure of GBs, a common

course of action has been to classify GBs into property-related classes

such as symmetry (Pond & Bollmann, 1979; Pond & Vachlavas, 1983)

and structural units configuration (Sutton & Vitek, 1980). However,

in spite of these efforts, in practice GBs are still crudely classified into

three main groups: low angle, special or singular and general.

The purpose of this paper is to show that if the rotation angle is

properly parameterized then a recurrence relation between O-lattices

of rotation-related GBs emerges. The parametrization induces a

partition of the angular space into an effectively finite number of

disjoint angular intervals. The recurrence relation links the O-lattices

of GB lying in adjacent intervals. The partition of the angular range

into disjoint intervals actually groups GBs into equivalence classes;

all GBs contained within a given interval belong to a class that shares

structural features. This means that the O-lattice theory alone

produces a classification of GBs that is independent of the crystal

system and is therefore completely general. In this scenario, each

equivalence class is associated with a special GB (or normal form),

which is a special (singular) boundary in the sense that it contains

only primary dislocations and has a particularly simple structure.

2. Angular parametrization

Consider two lattices L1 and L2 such that L2 ¼ RL1, with R denoting

a rotation through an angle � around a given crystallographic axis

hhkli. For any rotation angle � between L1 and L2, we can always

write (Romeu, 2003)

tanð�=2Þ ¼ N1=2��1; ð1Þ

where N ¼ h2 þ k2 þ l2 and � is a real number. As we shall see, the

above parametrization has important consequences, but for the time

being notice that it is useful in that it allows the separation of the axis

and angle contributions into the variables N and �. If we define x as

the closest integer to � and � ¼ � � x as the fractional part of �
contained in the interval ð� 1

2 ;
1
2Þ, then

� ¼ xþ � ð2Þ

and equation (1) becomes

tanð�=2Þ ¼ N1=2 1

�
¼ N1=2 1

xþ �
: ð3Þ

If we restrict � to take on only rational values then the previous

equation reduces to the well known Ranganathan equation

tanð�=2Þ ¼ N1=2p=q, where N ¼ jhhklij2 and p, q are integers

(Ranganathan, 1966) giving the possible angles between rotation-

related coincidence boundaries in the cubic system. It must be noted

that, owing to symmetry considerations, different integers p, q in

Ranganathan’s equation may yield the same structure. For example,

for rotations around h001i, N ¼ 1 and � ¼ 2 tan�1ðp=qÞ but, since any

rotation by 90� leaves the structure unchanged, the same structure is

obtained for ðq� pÞ=ðqþ pÞ, ðqþ pÞ=ðq� pÞ and q=p, corresponding

to the angles 90� � �, 90� þ � and 180� � �. In general, if the rotation

angle is restricted to the interval ½0; �=2� with � = symmetry angle of

the rotation axis, then the quotient p=q is uniquely determined.

Note that, while Ranganathan’s equation is valid only for the cubic

case, the above parametrization is valid always. If additionally � is an

integer ð� ¼ 0Þ, then the resulting interface is a singular coincidence

boundary that contains only primary dislocations. Conversely, if

� 6¼ 0, then the interface contains secondary dislocations whose

spacing is a function of � (Romeu, 2003).

If � is small, xþ � is a large number and its fractional part � can be

neglected. Hence, although small-angle boundaries are indeed

singular boundaries (recall they are composed of primary disloca-

tions), they are so close together (�� x) that it is no longer justifiable



to call them singular and they form a class of their own. As a result,

although the number of singular boundaries (angular intervals) is

actually infinite, only a finite number of them need be considered.

3. The O-lattice in two dimensions

In the coordinate system of L1, the inverse of the displacement field

matrix T ¼ ðI � R�1Þ is given by

T�1
¼

1

2N1=2

N1=2 �
�� N1=2

� �
: ð4Þ

According to Bollmann, if A is the structure matrix of the L1 lattice,

then a basis for the O-lattice is given by the columns of the structure

matrix O given by

O ¼ T�1A: ð5Þ

It is easy to see from equation (4) that T�1 can also be written as

T�1
� T�1

� ¼
1
2 I þ �

1

2N1=2
R��=2 ð6Þ

with I and R��=2 being the identity matrix and a rotation through

��=2: In order to simplify notation, we write

RN ¼
1

2N1=2
R��=2 ð7Þ

so that equation (3) becomes

T�1
� ¼

1
2 I þ �RN : ð8Þ

The usefulness of equation (8) lies in the fact that the angle and

rotation-axis contributions to the O-lattice have been explicitly

separated into the terms � and RN . With this we now can write T�1
� in

terms of x and � as

T�1
� ¼ T�1

x þ �RN ð9Þ

so that the O-lattice is given by

O� ¼ T�1
� A ¼ T�1

x Aþ �RNA; ð10Þ

or more clearly

O� ¼ Ox þ �RNA: ð11Þ

Therefore, if the O-lattice Ox for a singular orientation x is known,

then all O-lattices within the interval ðx� 1
2 ; xþ 1

2Þ can be readily

calculated by adding �RNA, whose columns, according to equation

(7), are the basis vectors of L1 rotated by ��=2 and scaled by

�=ð2N1=2Þ.

Note that equation (11) effectively partitions the angular space

into intervals of length �� ¼ 1 centred on the integer x which can be

used to label the interval. The real number � then defines the position

of a GB within a given interval. All GBs that share the same interval

position, i.e. the same value of �, are related [see equation (13)].

4. Recurrence relation between O-lattices

Using equation (9), it follows that, for a given rotation axis,

T�1
� � T�1

��1 ¼ T�1
x � T�1

x�1 ¼ RN

and

O� �O��1 ¼ Ox �Ox�1 ¼ RNA: ð12Þ

The last equation implies that, for a given rotation axis, the basis

vectors of two O-lattices differing in angular parameter by one are

related by the columns of the matrix RNA, which is a constant for a

given rotation axis [see equation (7)].

Using equations (11) and (12), it follows that

O� ¼ Ox þ �ðOx �Ox�1Þ:

In particular, if � ¼ 1 then O� ¼ Oxþ1 and we obtain the recurrence

relation:

Oxþ1 ¼ 2Ox �Ox�1:

More generally, since by equation (12) O� �O��1 ¼ O�þ1 �O� , it

follows that

O�þ1 ¼ 2O� �O��1: ð13Þ

Take the example of ð001Þ-rotation GBs in the cubic system and

suppose the O-lattices of two particularly simple systems are known

such as � ¼ 1 (� ¼ 90�, x ¼ 1) and � ¼ 5 (� ¼ 53:1�, x ¼ 2). Using

equation (11), all O-lattices in the equivalence classes x ¼ 1 and

x ¼ 2 are known. Then using equation (13) all O-lattices in the

angular range can be calculated. See Fig. 1.

5. Conclusions

In this work, we have shown that, when the angle between two

identical lattices is properly parameterized, the angular range

becomes naturally partitioned into disjoint intervals which group

GBs into equivalence classes. It has been shown elsewhere (Romeu,

2003) that all GBs in a given class have common structural features

that can be deduced from the structure of the singular normal form

located at the centre of the parameterized intervals ½xi �
1
2�, where the

angular parameter � ¼ x is an integer. We have also shown that there

is a recurrence relationship that relates the O-lattices of GBs

contained in adjacent intervals (classes), so that knowing the

O-lattice for two orientations around a given crystallographic axis

suffices to calculate the O-lattice for any orientation.
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Figure 1
Angular range for ½001� twist GBs labelled using degrees and the dimensionless
parameter �. Adjacent intervals have been highlighted using alternating shades of
grey. Note that, for small �; x� �, the intervals become arbitrarily small ð� ’ xÞ so
that all small-angle GBs are singular. As a result, small-angle GBs belong to a class
of their own.


